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Abstract
Amongst philosophers, there is ongoing debate about what successful event remem-
bering requires. Causal theorists argue that it requires a causal connection to the past 
event. Simulation theorists argue, in contrast, that successful remembering requires 
only production by a reliable memory system. Both views must contend with the fact 
that people can remember past events they have experienced with varying degrees of 
accuracy. The debate between them thus concerns not only the account of success-
ful remembering, but how each account explains the various forms of memory error 
as well. Advancing the debate therefore must include exploration of the cognitive 
architecture implicated by each view and whether that architecture is capable of pro-
ducing the range of event representations seen in human remembering. Our paper 
begins by exploring these architectures, framing casual theories as best suited to the 
storage of event instances and simulation theories as best suited to store schemas. 
While each approach has its advantages, neither can account for the full range of our 
event remembering abilities. We then propose a novel hybrid theory that combines 
both instance and schematic elements in the event memory. In addition, we provide 
an implementation of our theory in the context of a cognitive architecture. We also 
discuss an agent we developed using this system and its ability to remember events 
in the blocks world domain.
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1  Introduction

Humans have the ability to recall individual past events (Tulving, 1983; Rubin & 
Umanath, 2015). This appears to include both the successful retrieval of past events 
that one has experienced and reconstructions of such events from schematic informa-
tion, the latter of which are often but not always accurate. There are two prominent 
philosophical approaches to event memory—causal theories (Martin& Deutscher, 
1966) and simulation theories (Michaelian, 2016b). Causal theories focus, as the 
name suggests, on the importance of a causal connection to the remembered event, 
while simulation theories focus on the use of a reliable memory system to construct 
event representations. While each approach attempts to capture the entire range of 
event memory within its framework, neither is successful. We suggest that this dif-
ficulty stems from the reliance on a single representational format as well as the 
absence of detailed implementations of these theories. In this paper, we propose a 
hybrid event memory that unifies the theoretical postulates of each theory and their 
event representations. We further argue that this novel hybrid theory allows us to 
explain the full range of event memory abilities. Importantly, we introduce an imple-
mented system that embodies our theoretical proposal and demonstrate its event 
memory capabilities in a simulated environment. We describe this implementation 
in detail and discuss the initial results from our experiments.

In the next sections, we briefly review the two main philosophical theories 
of human event memory in the literature and introduce our novel hybrid the-
ory. Then we describe our implementation of this theory in detail and discuss 
some experiments carried out in blocks world to evaluate the system’s ability to 
remember events. Finally, we conclude after a discussion of related work.

2 � Existing Theories of Event Memory

Theorizing about memory is a focus of research throughout cognitive sciences. 
Our work here focuses on philosophical accounts of remembering, which aim 
to unify the concept of memory and empirical evidence about remembering. 
This focus allows us to bracket, at least for the time being, numerous empirical 
accounts of event memory. Accounts of event memory in psychology and neuro-
science focus primarily on characterizing the activity of our memory system(s), 
explaining how they work. Researchers in these areas have played a critical role 
in identifying and demonstrating the phenomenon of false memory—where event 
memories fail to be accurate. Their focus is on documenting these false memo-
ries, the conditions under which they occur and how participants experience and 
incorporate these states into the rest of their thoughts and actions. There is little 
attention given to accounts of what successful remembering requires or theoreti-
cal distinctions between kinds of false memory.

Philosophical accounts of remembering, in contrast, aim to articulate what 
remembering requires, and then situate various memory activities as meeting or 
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failing those requirements. Theoretical approaches to event memory in the philo-
sophical literature are often sorted into causal and post-causal theories (Michae-
lian & Robins, 2018), where simulationism is the most prominent and detailed 
post-causal account. This labeling of the two approaches reflect the fact that the 
causal theory is the better-established, traditional view. Simulationism and other 
post-causal accounts have emerged more recently, as part of an effort to address 
inadequacies in the causal theory.

These theories offer possible frameworks for organizing the myriad forms event 
remembering well-documented by memory science. Causal theories character-
ize success in terms of the maintenance of a causal connection to the past event. 
Simulation theorists instead emphasize the production by a memory system that is 
reliable. Proponents of each view have done their best to articulate the key feature 
of their respective account—what the appropriate causal connection involves, how 
the reliability of memory systems should be understood. Moving the debate forward 
requires exploration of how each view manages to explain the full range of human 
event remembering—not only success, but the various forms of memory error. This 
requires exploring how successful remembering is generated, and which parts of 
that process break down in the production of different forms of error. In other words, 
it requires understanding the implementation of each theory. But these philosophical 
theories do not tend to include an implementation. They do not often describe how 
the memory system is structured or specify the representational format of what is 
stored. These views do, however, have implications for implementation. That is, the 
theoretical commitments they involve place constraints on the underlying cognitive 
architecture of the memory system and representational format of the stored memo-
ries. Our interest is in exploring these theories to understand their architectural com-
mitments—the kinds of cognitive structures and representations they are committed 
to—and whether and how they could be improved upon to better account for the 
range of event memory phenomena. Below we offer a brief review of each theory.

2.1 � Causal Theory

The causal theory of memory is built up from the intuitive idea that remembering is 
a causal process. The ability to recall something now is due to what was previously 
learned and stored. For event memory, the cause of our recall must be a representa-
tion of that previous event, which derives from the event itself. This is the basic idea 
Martin and Deutscher (1966) laid out in their paper introducing the causal theory. 
They argued that remembering requires an accurate representation of the past event 
and that the person who is remembering be the person who experienced the previ-
ous event. What distinguished their account—and made it distinctly causal—was the 
argument for an additional requirement: that there be a causal link between the past 
event and the subsequent remembering. Much of their paper was then focused on 
spelling out exactly what kind of causal link was needed. After all, there are many 
ways that the two events could be causally connected that would not be instances of 
remembering. They emphasize that the right kind of causal link for event memory 
will be one that is sustained by a representation of that event. The representation 
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of the past event serves as the memory trace for that event with its content being 
roughly equivalent to what occurred during the event.

What then constitutes the right representation for the required causal link? There 
are debates amongst causal theorists with regards to the content of these represen-
tations (e.g., Bernecker (2010) proposes more substantive content, while Werning 
(2020) advocates for minimal content). As Robins (2016) has argued, the causal 
theory is committed to retaining a connection to particular past events. This is the 
only way to fulfill the causal theory’s requirement on the unique causal history of 
the remembered event. Compilation into a schema would sever that connection, and 
with it, the possibility of remembering for the causal theorist. The view thus requires 
the storage of individual episodes, although it allows that those episodes could be 
either localized or distributed. In this way, causal theorists are committed to the 
existence of memory traces as representations of the past event being remembered.

In short, whatever representation that is used in the causal view must be able to 
store and preserve those unique features of an event. This still allows for a causal 
theory to accommodate reconstructed recollections, but this is handled in the details 
of how the representations—the memory traces—are structured. As Debus (2018) 
explains in a recent defense of the view: “it is necessary that a relevant event of 
information acquisition has left some ‘trace’, a trace which has been preserved and 
is causally relevant for the occurrence of the mental state or event which should 
count as a memory” (p. 68).

Causal theorists have worked to update their understanding of the stored repre-
sentation and retrieval process so as to accommodate the host of empirical evidence 
(Wells, 1982; Schacter & Addis, 2007) that event memory is highly reconstruc-
tive—often recombining elements in ways that can alter or distort memory contents. 
For example, Debus (2007) claims that event memory representations can be sys-
tematically modified at the time of encoding while explaining perspective switches 
in observer memories, and Hintzman (1986) even argues for a theory that recon-
structs events on the fly by retrieving a number of experiences from memory that 
match a retrieval cue and averaging them together. As a result, most causal theorists 
now accept that neither stored episodes nor produced recollections need to faithfully 
retain all of the information from the initial event; loss of information is possible 
and consistent with the retained ability to remember (Bernecker, 2008). Most causal 
theorists, however, continue to resist adding content to the episode. Some research-
ers also propose changing the representational format of the trace—from a localized 
representation to a distributed one (Bernecker, 2010; Michaelian, 2011).

These modifications help the causal theorists to explain some instances of recon-
structive remembering. However, they fail to address many of the central forms of 
reconstruction. Reconstructive remembering, for example, often involves the incor-
poration of information from other events (Suddendorf et al. 2009). These additions 
often influence the accuracy of a memory, and they violate the causal theorists’ con-
straint on episodic representations containing only information less than or equal to 
the information in the original event. In addition, the causal theorists cannot account 
for the possibility that reconstruction could lead to an accurate representation of the 
past event without any connection to the episodic memory trace. For these reasons, 
many theorists have shifted their efforts from revising the causal theory to looking 
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for alternatives. We discuss the most prominent post-causal alternative, simulation 
theory, in the next section.

2.2 � Simulation Theory

Simulation theory (Michaelian, 2016b; Michaelian & Robins, 2018) is a theory of 
remembering, built around an endorsement of the evidence about reconstructive 
remembering, and a rejection of the causal condition on remembering and the causal 
theory more broadly. Simulation theorists view the act of remembering as a con-
structive process of simulation, where one builds event representations from a wide 
network of available information about past events. To illustrate the nature of this 
simulation, Michaelian (2016b) emphasizes that remembering should be seen as a 
form of imagination.

Like the causal theorists, simulation theorists continue to defend the idea that 
remembering requires accuracy. In order for one’s memory of receiving a yellow 
bike for their eighth birthday to count as an instance of event memory, it must be 
the case that he or she received such a bike for that birthday. What is not neces-
sary, however, is an episodic representation of that birthday stored in memory since 
the occurrence of the event. Instead, one’s overall knowledge of past events can be 
used to reconstruct a plausible representation of the past event. Without reliance on 
an episodic representation of the event itself, Michaelian argues that “the only fac-
tor that distinguishes remembering an episode from merely imagining it is that the 
relevant representation is produced by a properly functioning episodic construction 
system” (Michaelian, 2016b, p. 97).

Moving away from episodic representations of particulars allows the simulation 
theory to capture a range of event memory phenomena that were left unexplained 
by the causal theory. Simulation theorists can explain how instances of remember-
ing include more information than was present in the original event and also cover 
instances where the information derives from a range of distinct sources. Cases like 
one’s memory of the yellow bike at the birthday party, however, remain problematic. 
In such cases, Michaelian insists that remembering is possible even without the epi-
sodic representation (Michaelian, 2016a, p. 118). But how is this possible? It seems 
highly unlikely that one could construct a memory that just happens to be accu-
rate about details of a particular past event without storing information from that 
event itself. Generalized information about birthday parties could help a remember-
ing subject to build this memory, but such information would presumably provide 
features of the event that are common to many birthday parties—things like cake, 
gifts, and balloons. While it is not unheard of to receive a yellow bike, it is far from 
expected of a birthday party.

Even a properly functioning reconstructive process must rely on the input mem-
ory representations to generate a recollection. This implies that the yellow bike 
should come as an input to the reconstructive system, embedded in an event repre-
sentation of some sort, if it is to be included in the recollection output. Of course, 
it is possible, by chance, to have an available event schema that includes a yellow 
bike sourced from another context, but there is no particular reason why this chance 
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inclusion should always happen for the yellow bike when remembering the particu-
lar birthday party. Unless a representation of this past event in memory explicitly 
records the existence of the yellow bike, we cannot expect to remember the yel-
low bike reliably when recalling the event of the eighth birthday party from the 
reconstructive process. In other words, a properly functioning reconstructive pro-
cess alone is not sufficient for remembering particulars of a past event. What is also 
necessary is a representation that is a reliable model for the target event as an input 
to this process, which, in our view, has to be an episode as a record of the specific 
event.

While the causal and simulation theories do not directly mention implementa-
tional details, they do have implementational consequences. More specifically, 
these views have implications for the representational features of the underlying 
system. We hope that our coverage of causal and simulation theories helps clarify 
the implicit representational constraints of each view. The causal theory requires the 
memory system to be able to store and preserve information about specific events. 
The simulation theory, in contrast, denies that such features are required. Instead, 
this view implies that schemas alone should be able to sufficient for remembering 
using a reconstructive process. We believe that, by requiring an explicit implemen-
tation of these theories, we can frame the debate and suggest ways to move for-
ward. We also observe that both of these theories face challenges from the features 
of human event remembering, and therefore a new framework may be necessary.

3 � Hybrid Theory of Event Memory

As discussed above, both the causal and the simulation theories are unable to cap-
ture the full range of human event memory performance, which includes both the 
ability to remember particular past events and the construction of possible past 
events on the basis of schematic information. It is critical to develop a theory that 
can accommodate all these aspects of human memory. We suspect that the limita-
tions faced by causal and simulation theorists, while different, stem from the same 
basic problem—reliance on a single representational form to explain all of event 
memory. In response, we propose a new theory that retains the virtues of both the 
simulation and the causal theories. The core argument of this hybrid theory is that 
the human memory for events stores both episodic and schematic representations. 
More specifically, our theory posits that:

Event Memory is a Long-Term Memory that Stores Both Episodes and Schemas. 
This commitment to both representational forms illustrates the hybrid nature of the 
theory, incorporating the elements of causal and simulationist approaches. The event 
memory in our framework is a long-term memory that stores records of events expe-
rienced by the remembering agent. The contents of this event memory are stable, 
but incremental changes occur over time to schematic representations as new events 
are encountered.
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Episodes are Propositional Representations of Specific Events. The contents of 
which are the agent’s internal and external state descriptions, including the agent’s 
perceptions, beliefs, goals, and intentions. Further, episodic representations are 
causally dependent on past events in the sense that a specific past event was oper-
ative in producing the episodic representation. In this way, they reflect the causal 
theory aspect of our hybrid theory.

Schemas Are First-Order Propositional Templates with Probabilistic Annotations. 
They summarize episodes by embedding probability distributions associated with the 
summarized episodic content. In so doing, schemas employ probability to represent a 
range of possible events. They can also summarize similar event schemas in the same 
manner. In this way, they reflect the simulationist aspect of our hybrid theory.

Event Memory Elements are Organized in Hierarchies. At the lowest level, event 
memory records episodes. Over this, it stores schemas that summarize the elements 
of the episodes at the lower level in a probabilistic manner. Event memory elements 
are connected by ISA links from a child node to its parent. This indicates that the 
child is a specialization of its parent. Hence, the event memory elements gradually 
become more specific at progressively lower levels in the hierarchy.

Retrieval Cues Play a Central Role in Remembering. Our theory characterizes 
remembering as a response to a retrieval cue. Cues are often a subset of the agent’s 
current observations of the world. When presented with such a cue, we claim that 
the goal of the event memory system is to remember an event that is at least consist-
ent with information contained in the cue.

Remembering an Event Involves Performing Probabilistic Inference. Given a 
retrieval cue, the system searches for a memory element that best matches it. Some-
times the best match will be an episode and other times the best match will be a 
schema. When the found match is an episode rather than a schema, it is returned 
as a remembered event as it provides a deterministic description of the past event. 
In contrast, if the match is a schema, the system performs probabilistic inference to 
output the most likely instance of the schema conditioned on the retrieval cue pro-
vided. This reconstructive process is inherently approximate, allowing for inaccura-
cies in the representation that is returned.

Our novel theory as described above unifies aspects of causal and simulation 
theories by employing hybrid event representation. It includes both specific epi-
sodes and generalized schemas as event memory elements. The generalization hier-
archy they form can afford remembering that is consistent with the full range of 
human memory for events. For the time being, we assume events that describe states 
of affairs and ignore the temporal aspects of lived experience. Hence, our theory 
does not make any specific claims about how to determine where one event ends 
and another begins, and it stays agnostic to views like event segmentation (Zacks & 
Swallow, 2007; Kurby & Zacks, 2008). In the next section, we describe our imple-
mentation of this new theory, beginning with the hybrid representation and continu-
ing on to the processes that work over the event memory elements.
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4 � Hybrid Event Memory System

The core commitments described above dictate the computational implementation 
of our theory. We believe that the hierarchical organization of event memory ele-
ments, which includes specific episodes at the bottommost level and partially gen-
eralized schemas at higher levels, results in an elegant combination of causal and 
simulation theoretic aspects of memory storage and retrieval. In this section, we 
describe our implemented system in detail and discuss its implications, starting with 
the representation and continuing to the processes that work over it.

4.1 � Event Representation and Generalization Structure

We begin our discussion of representation with some definitions that will set the 
foundation for the event memory structures we will discuss. In our framework, the 
world is composed of a potentially infinite set of objects, and this set can be parti-
tioned using object classes. Such classes impose representational constraints over 
its members, allowing objects in a class to be described with the same set of attrib-
utes. Hence, object classes are templates for generating grounded representations, or 
instances, of objects. We represent objects with lists that include the object type, a 
unique name, and attribute-value pairs.

These objects and their attributes satisfy certain hierarchical relations in the 
world, which we define as predicates. Relations may also be partitioned into a set 
of relational classes. For example, we can consider an on relation defined with a 
block stacked on top of another block and a second on relation defined with a trian-
gle stacked on top of a block as members of a larger class, ��������� . We represent 
instantiated relations, or beliefs, as lists that include the relational class and a subset 
of component object identifiers as arguments.

Then an episode in our framework is a set of grounded objects as well as the cor-
responding beliefs derived from them. Since beliefs are inferred from hierarchically 
defined relations like on and next-to based on perceived objects like blocks 
and their attributes, episodes form a dependency graph composed of objects, their 
attributes, and beliefs. Figure 1 shows a sample state in blocks world and the corre-
sponding dependency graph. The system represents a perceived object like block1 
as a tree of height 1 with the object class as the root. There are directed edges from 
this root to the nodes that correspond to the attributes of the object like width, 
height, x, and y. Each attribute node stores its perceived value in it. Based on 
such objects, we define relations like on by adding a node to the dependency graph. 
The outgoing edges from this node link to the component objects and their attrib-
utes over which the relation is defined. Similarly, for higher-level relations, the out-
going edges link to the relevant lower-level relations as well as component objects 
and their attributes. In addition, we represent relational classes as parent nodes of 
relations.

In an episode, the dependency graph describes the event that actually occurred, 
by storing a set of value assignments for relation, object, and attribute nodes. But 
when multiple episodes are aggregated into a schema, the resultant dependency 
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graph stores probability distributions in these nodes that specify the joint probability 
of correlated variables. More formally, let the nodes in the graph be a set of m ran-
dom variables, {x1, x2, ..., xm} , with the set of valid assignments as their domains. If 
we assume that these variables are organized hierarchically from top to bottom, and 
impose conditional independence on them, namely, for any three variables, xi , xj , 
and xk , we assume p(xi, xj|xk) = p(xi|xk)p(xj|xk) , then their joint distribution is:

where �pa(t) are the parent nodes of xt . This equation specifies a structure known 
as a Bayesian network, where � is the collection of state variables. The advantage 
of using Bayesian networks to encode event schemas stems from their systematic 
reliance on conditional independence assumptions. They are the key to compactly 
representing complex joint distributions since they reduce the number of parameters 
necessary to encode the full joint probability distribution. In the case of hierarchi-
cal graph structures, it ensures that the probability of a variable taking on a spe-
cific value is determined only by the variables that came immediately prior, namely, 
its parents. These conditional independence assumptions are made manifest by the 
directed edges between nodes in the network. If the m nodes of a network have O(F) 
children which can take K possible values, then the number of parameters needed 
in the model is O(mKF) , which is much less than O(Km) that would be needed if 
no conditional independence assumptions were made. Although this is a drastic 
improvement, O(mKF) is still exponential, and therefore using large Bayesian net-
works can be problematic. We address this issue later in Sect. 4.2.2 when we discuss 
inference in this setting.

In our framework, event schemas as Bayesian networks consist of trees that rep-
resent objects and relations. Object trees contain two different types of nodes. The 
root node r denotes an object class and follows a categorical distribution parameter-
ized by a k-dimensional vector encoding the probability that r instantiates one of 
its members. Attribute nodes express conditional probabilities of taking on a spe-
cific value, given the object, rk . In other words, every attribute node ai with domain 
{v1, v2, ..., vK} specifies p(ai = vj|r = rk) . This is a useful result, since:

(1)

p(x1, x2, ..., xm) = p(x1|x2, x3, ..., xm)p(x2|x3, x4, ..., xm)...p(xm)

= p(xm)

m−1∏

t=1

p(xt|�pa(t)),

Fig. 1   Representing an episode as a dependency graph
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This means that every object the agent perceives is represented as a Naïve Bayes 
classifier in the dependency graph, which will capture the class-conditional correla-
tions between object attributes and their associated objects. Importantly, the attrib-
ute nodes of Naive Bayes classifiers are assumed to be independent from each other. 
This, however, may not be true in the physical world. Object attributes may, in fact, 
be correlated with each other, but the influence may not be unidirectional like in 
Bayesian Networks. For example, two attributes may be correlated with each other 
via an undirected edge, but we do not capture these potential correlations among 
the variables in our current representation. This, however, is usually not an issue 
because Naïve Bayes classifiers tend to perform well in practice.

We represent relations as trees of height 1, where the root node, z, represents the 
relational class parameterized by a k-dimensional probability vector w following a 
categorical distribution. Each child node in the tree corresponds to a specific dis-
junction of the relation, and w describes the probability distribution of these defini-
tions. Hence, the variable z, once inferred, acts as a selector for which definition 
to generate in the current state. When z is known, an object or attribute, x, given 
z follows a categorical distribution parameterized by an n-dimensional probability 
vector �z , which is the distribution over the values of x where z-th disjunction is 
considered.

In our implementation, episodes and schemas employ conditional probability 
distribution (CPD) tables. Table 1 shows a notional CPD tabulating the conditional 
probability distribution of different state elements. The distribution specifies p(x|y, z) 
defined over categorical variables x, y, and z. The two left-most columns enumerate 
the range of the independent variables, while the range of the dependent variable, x, 
is in the second part of the top row. The joint probability of variable assignments are 
displayed in the center part of the table. For episodes, these probabilities determin-
istically describe a single event, but for schemas, the distributions capture a range of 
possible events.

Finally, our system stores episodes and schemas in a generalization tree. As Fig. 2 
shows, the root node is a schema that summarizes all the episodes the agent has 
experienced. The leaf nodes in this tree are the individual episodes, and there are 
layers of event schemas on top of these. In this hierarchy, higher-level elements are 
probabilistic summaries of their children, and an edge from a node to its parent indi-
cates that the child belongs to the kind of its parent. The representational choices 
we outlined so far allows our system to capture both specific episodes and their 
generalized schemas. In the next section, we describe various processes that work 
over this representation to store new events in memory and retrieve past events for 
remembering.

p(rk|a1, ..., aF) ∝ p(a1|rk)p(a2|rk)...p(aF|rk)p(rk)

∝ p(rk)

F∏

i=1

p(ai|rk).
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4.2 � Event Memory Processes

Agents with event memory routinely store their experiences and retrieve the records 
during their operation. In our framework, we define two multi-step processes, epi-
sodic insertion and event schematization, and retrieval and remembering, for this 
purpose. The insertion process introduces new episodes into the event memory. As 
instances are placed into the event memory, the system updates existing contents 
and maintains the hierarchical organization of schemas over episodes through sche-
matization. When the system needs to remember an episode, it invokes its retrieval 
process to produce a remembered event. In this section, we discuss details of these 
processes that work over event memory contents.

4.2.1 � Episodic Insertion and Event Schematization

Insertion occurs in an online fashion, incorporating episodes as they are encoun-
tered. When the agent experiences a new event, the system attempts to find the most 
similar element in the generalization hierarchy. It begins from the root node and 
works recursively down toward the leaf nodes, as it updates probability distributions 

Table 1   Notional conditional 
probability distribution

x

y z A B

A D 1/2 1/2
A E 0 1
B D 1/3 2/3
B E 1 0
C D 1 0
C E 2/5 3/5

Fig. 2   Notional generalization tree
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along the way. Once the system identifies the best matching element, it inserts the 
new episode as a child of this element. By doing this, the system incrementally clus-
ters and classifies the episodes into event schemas that summarize them.

Table 2 shows this process in detail. The system sorts a new episode using a 
recursive level-order traversal through the hierarchy. Initially, the system matches 
the new episode with the root node in its event memory. If the root node has any 
children, the system sequentially checks each child to find the locally best match-
ing node to the current episode (Line 7–15). If the root node is a better match to 
the episode than its children (Line 19), the new episode is inserted as a child of 
the root (Line 20). If not, one of the children nodes is a better match than the root, 
and the level-order traversal continues by recursively running the procedure on 
the best child (Line 21). In a degenerate case where the new episode and the root 
node of the tree are identical, the episode is absorbed into the root without con-
tinuing the traversal (Line 18).

During insertion, the system attempts to match a new episode against an exist-
ing event memory element (Line  10) using structure mapping (Gentner, 1983). 
This allows the system to determine the similarity of the two structures and meas-
ure the quality of match between them. The system attempts to map every node 
in the new episode’s dependency graph to a node in the dependency graph of the 
memory element. During this process, we impose an additional constraint that 
requires a matching pair of nodes to be of the same class and to have CPDs that 
contain matching dependent variables, but the independent variables may vary. 

Table 2   Procedure for inserting an episode into the event memory

1: procedure Insert-Episode(eltm, ep)
2: (eltm, cost-of-merging-p) ← ep-merge(eltm,

ep)
3: if has-branches(eltm) then

← ∅
← ∅

← ∞
7: for each child branch in eltm do
8: for each factor, P , in ep

Q, in branch do
10: 〈sol, cost〉 ← structure-map(P,Q)

4: mappings
5: costs
6: best-child-cost

11: costs ← append(cost, costs)
12: mappings ← append(sol, mappings)
13: if sum(costs) < best-child-cost then
14: best-child-cost ← sum(costs)
15: best-child ← branch
16: if eltm is empty then

← list(ep)
18: else if ep = Root(eltm) then return eltm

with increased count
19: else if cost-of-merging-p < best-child-cost

then

9: and each factor,

17: eltm

20: eltm ← AddChild(eltm, ep)
21: else Insert-Episode(best-child, ep)
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For example, a valid match for a node from a new episode that has the CPD, 
p(x|y,  z), can only match a node from the existing element that has the CPD, 
p(x|a, b). This not only ensures that the entity types match but also allows differ-
ent relations to be defined over these entities.

The structure mapping procedure returns the lowest-cost mapping between an 
episode and an event memory element. In our framework, we define cost to be the 
probability that the event memory element does not generate the episode, namely, 
(1 − scoreBIC(Q ∶ P)) , where P and Q are the dependency graphs of the new epi-
sode and the event memory element, respectively, and scoreBIC is the Bayesian 
Information Criterion (BIC) specified as:

Here, �(�̂Q ∶ P) is the likelihood of P under Q, �̂Q are the parameters of the con-
ditional probability distribution in Q, M is the number of episodes summarized by 
the event memory element, and Dim[Q] is the number of free parameters in Q that 
are not in P. Simply put, this score computes a trade-off between how predictive 
the event memory element is and how structurally complex it is. When M is small, 
scoreBIC favors more predictive event memory elements, but as M grows, it prefers 
more parsimonious event memory elements. This is a built-in regularization that 
avoids overfitting while maximizing likelihood, especially as M grows. This effec-
tively applies Occam’s Razor (Jefferys & Berger, 1992) to selecting a good match for 
the new episode, since event memory elements with high scoreBIC are the structur-
ally simplest elements with the highest probability of generating the new episodes.

Moreover, in Bayesian networks, the BIC score decomposes to a series of local 
computations over the CPDs themselves (Koller & Friedman, 2009). This means 
that we can compute the BIC score of the entire network during the structure 
mapping process. Using the decomposed BIC score, we can reformulate our cost 
function as:

where N is the number of nodes in the episode’s dependency graph, pi is the i-th 
node in that graph, height(pi) is the height of the i-th node in the episode’s depend-
ency graph, and qi is the corresponding match to pi in the event memory element. 
Considering height(pi) in the cost function forces the structure mapping procedure 
to prioritize higher-level matches in the dependency graph and prefer to match more 
general schemas given all the other conditions are equal. When pi is matched, the 
scoreBIC dominates the cost. In contrast, when pi does not have any corresponding 
node in Q, then the height of the unmatched node determines the cost of match. 
As a result, our system prefers to match states that are qualitatively similar at a 
higher level. For example, the system will prefer to match an episode that involves 
two blocks, A and B in an on relation to another episode with two blocks, C and 
D with the same relation, instead of matching to a third episode with two blocks A 

(2)scoreBIC(Q ∶ P) = �(�̂Q ∶ P) −
logM

2
Dim[Q]

(3)
N∑

i=1

height(pi) ⋅ (1 − scoreBIC(qi ∶ pi)),
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and B in a next-to relation. Although the first and the third episodes contain the 
same blocks, their higher-level relations are different. Therefore, the cost of match-
ing these two episodes will be higher than matching the first episode to the second.

Our system interleaves the insertion process we described so far with event 
schematization, which uses the results of structure mapping to merge two event 
memory elements into a schema. The system performs normalized factor addition 
by filtering the nodes from the episodic dependency graph with their associated 
matches. When the matching element from the event memory is also an episode, 
the merging operation will yield a new schema. In cases where the existing event 
memory element is already a schema, the merging operation will update the dis-
tributions of that schema. It is important to note that the CPDs from the new 
episode and their counterparts in the matched element are not necessarily defined 
over the same domains. For example, the episode might contain a new predicate 
like (tower C D) not previously modeled in the matching schema. Therefore, 
before the merging operation takes place, the system temporarily renames the var-
iables in the episode CPDs with the names of their corresponding matches. This 
enables the system to easily identify which variables to update and to what extent. 
Once the CPD variables from both sides are made directly comparable in this 
manner, the system proceeds to update the domains and the variable assignments.

Then the system uses a filtering procedure that passes an episode CPD through 
a schema CPD. Figure 3 shows an example, where the system updates the schema 
distribution for p(height|on,  block) with evidence contained in a new episode. 
Note that the block variables in the two CPDs have different domains. Namely, 
the episode describes a block, D, while the schema describes another block, B. 
In order to merge these two CPDs properly, the system expands the domain of 
the block variable in the schema and puts placeholders for the additional value, 
D, for this variable, while it similarly adds placeholders for B in the episode. 
Then, the merging operation simply performs element-wise addition over these 
expanded structures to update the distribution for p(height|on, block).

Table 3 shows a pseudocode for this element-wise addition process. The system 
constructs a new CPD � with the expanded domain (Line 2–3). To determine the 
merged CPD’s variable assignments, it takes the sum of the counts of each variable 
assignment in the schema and episode (Line 6–11). Then, the system calculates the 
total counts (Line 13) and the probabilities (Line 14) of the variable assignments. 
This update procedure ensures that the system maintains the correct empirical prob-
ability distributions for CPDs because it preserves the count information. In cases 
when a variable from a dependency graph does not have a corresponding match, it 
inherits the domains of the parent node variables because those variables may have 
matched counterparts. Doing this ensures that the variable domains remain consist-
ent throughout the episode or schema.

As outlined above, the system inserts new episodes into the best matching loca-
tion in its memory through structure mapping and uses its merging process to incre-
mentally schematize the event memory elements. This results in a spectrum ranging 
from individual episodes at the lowest level to progressively more general schemas 
at higher levels. Our system retrieves elements from this hierarchical structure and 
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produces remembered events in response to retrieval cues. In the next section, we 
describe these processes in detail.

4.2.2 � Retrieval and Remembering

When an agent with event memory operates in the world, it stores experienced epi-
sodes and forms the episodic generalization hierarchy as described in the previous 
section. At any given point, the agent might need to remember a past event, and 
the system invokes a retrieval process to produce a remembered event. Our event 
memory system performs retrieval in a level-order fashion using a retrieval cue. 
Depending on the situation, a retrieval cue may be a fully observed state, or only 
a partial description of an event. The system tries to find an episode or a schema in 
its memory that best matches the given retrieval cue. This search involves the same 
machinery as what we use for episodic insertion, except that the system does not 
update the probability distributions of the existing event memory elements using the 
contents of the retrieval cue.

Fig. 3   Updating event schema with merge operation

Table 3   Procedure for filtering one CPD with another comparable CPD

1: procedure Factor-Filter(φ1, φ2, op)
2: ψ ← make-cpd(φ1, φ2)
3: ψ-assignments ← make-array(num-assignments)
4: j ← 0
5: k ← 0
6: for i from 0 to num-assignments - 1 do
7: if op = “+” then
8: ψ-assignments[i] ← (cpd-assignments(φ1)[j] ∗ cpd-count(φ1)) + (cpd-

assignments(φ2)[k] ∗ cpd-count(φ2))
9: else if op = “*” then
10: ψ-assignments[i] ← cpd-assignments(φ1)[j] ∗ cpd-assignments(φ2)[k]
11: (j, k) ← advance-indicies(φ1, φ2, j, k)
12: if op = “+” then
13: count ← cpd-count(φ1) + cpd-count(φ2)
14: normalized ← {val/count : val in ψ-assignments}
15: else if op = “*” then
16: count ← cpd-count(φ1)
17: normalized ← normalize(ψ-assignments)
18: cpd-assignments(ψ) ← normalized
19: return ψ
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If the search yields an episode as the best match to the retrieval cue, the event 
memory system returns that episode immediately, since the episode is a determin-
istic representation of a specific event to be remembered. In contrast, if the system 
finds an event schema as the best match, it needs to further process the schema to 
return the most likely instantiation as the remembered event. The process involves 
performing probabilistic inference over the probability distributions contained in the 
schema. The inference step discovers the values of the unobserved state elements of 
the schema using the retrieval cue as a set of observed state elements. We describe 
this process more formally as in:

where �v are the observed state elements, �h are the unobserved state elements, and 
� are the parameters of the retrieved schema. This equation shows that the system 
can divide the joint distribution of all the schema variables by the probability of the 
retrieval cue to infer the posterior distribution of unobserved variables. But comput-
ing the exact posterior distribution is not trivial, and computing the probability of 
the retrieval cue can involve intractable integrals if some of the schema variables are 
continuous. Even in cases where all the variables are discrete, computing the poste-
rior distribution takes an exponential time to the tree-width of the Bayesian network 
(Murphy, 2012).

To remedy this, we turned to an approximate class of inference strategies called 
variational inference (Murphy, 2012). This kind of inference strategy is appropri-
ate whenever the true joint distribution, p∗(�) , of variables is complex, but can be 
approximated by a simpler, variational family of distributions, q(�) , which can be 
made close to p∗(�) by minimizing the KL divergence between the two. Hence, 
using a variational inference strategy turns the inference problem into an optimi-
zation problem, for which many efficient strategies exist. In our context, p∗(�) is 
the distribution captured in the schema, and we chose the variational distribution, 
q(�) , to be the distribution represented by a Bethe cluster graph (Koller & Friedman, 
2009). As shown in Fig. 4, a Bethe cluster graph is a bipartite graph that has the 
CPDs of the Bayesian network as its first set of nodes, and the individual variables 
in the Bayesian network as the second set of nodes. Each node in the Bethe cluster 
graph is initially assigned a factor, �i . For the nodes in the first set, their factors are 
the corresponding CPDs, while the nodes in the second set have the initial factors 
of all 1’s. This ensures that all of the variable’s outcomes are equally likely at the 
outset. But the variables corresponding to the observations given in a retrieval cure 
are set to the observed values. Finally, an edge exists between a node i from the set 
of variables, to a node j from the set of CPDs, only when the variable i participates 
in the CPD j.

Given the initialized Bethe cluster graph, we use a message passing procedure, 
loopy belief propagation (Koller & Friedman, 2009), to perform probabilistic infer-
ence over this structure. Table 4 outlines this process. It begins on Line 2 by set-
ting the values of observed variables in the cluster graph. The body of the proce-
dure contains a loop, in which messages are passed from cluster to cluster. The loop 

(4)P(�h|�v,�) =
P(�h, �v|�)
P(�v|�)
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continues until the messages converge. At that point, two adjacent clusters will con-
tain the same marginal distribution for variables they have in common, so the loop 
exits. Following this, the system can either return a list of the marginal probabilities 
of all variables as shown in Line 17 or return the most probable state based on the 
posterior marginals as shown on Line 21. We are interested in remembering which 
corresponds to the latter. In this case, the inference procedure produces a list of 

Table 4   Procedure for performing probabilistic inference

1: procedure Calibrate-Factor-Graph(factors, op, edges, evidence)
2: messages ← initialize-graph(edges, evidence)
3: repeat
4: calibrated ← true
5: for i from 0 to length(edges) - 1 do
6: j ← edges[0]
7: k ← edges[1]
8: sepset ← cpd-identifiers(factors[j]) ∪ cpd-

identifiers(factors[k])
9: current-message ← messages[j][k]
10: new-message ← send-message(j, k, factors, op, edges, mes-

sage, sepset)
11: messages[j][k] ← new-message
12: if new-message �= current-messgae then
13: calibrated ← nil
14: until calibrated
15: if op = “+” then
16: for i from 0 to length(factors) - 1 do
17: collect compute-belief(i, factors, edges, messages)
18: else if op = “max” then
19: constraints ← nil
20: for i from 0 to length(factors) do
21: constraint ← compute-belief(i, factors, edges, messages)
22: constraint ← threshold-on-max(constraint)
23: constraints ← add-constraint(constraints, constraint)
24: constraint-satisfaction-problem-solver(constraints)

Fig. 4   Bethe cluster graph for Bayesian network in Fig. 1



	 D. H. Ménager et al.

1 3

constraint rules that are fed into a constraint satisfaction problem solver to uncover 
the specific values of the variables.

Running probabilistic inference procedures over Bethe cluster graphs provides 
us a more efficient inference process than those running directly over Bayesian net-
works. But this advantage comes at a price. This is due to the fact that messages 
from one node in the cluster graph to another can only carry information about 
one variable. For example, for node1 to send a message to node2 in Fig. 4, it must 
marginalize out information about every variable except for the variable in node2. 
For this reason, the joint behavior of variables is not considered during the infer-
ence procedure. This can lead to errors when our event memory system attempts to 
remember events. This is an unavoidable consequence of approximate inference. We 
accept this consequence, since this strategy makes inference over Bayesian networks 
tractable.

We have now covered our system in detail, describing its theoretical commit-
ments, its representations, and processes for storing and remembering events. In 
the next section, we will turn our attention to testing and evaluating it in a simu-
lated domain. We describe our experimental objectives and present the application 
domain. Then, we describe our experimental procedure and present our results.

5 � Experimental Analysis

As described so far, our novel event memory system uses hierarchically organized 
elements annotated with probability distributions, to store both specific episodes 
and event schemas in its generalization tree. The system uses event memory pro-
cesses that work over this representation to insert and schematize new episodes, and 
retrieve episodes from the event memory when needed. We argue that the hierarchy 
in our system affords a level of representational flexibility that neither the causal nor 
simulation theoretic perspectives capture. We hypothesize that: (1) our system stores 
and categorizes events in qualitatively distinct schemas; (2) the memory supports 
event remembering using both episodic and schematic representation; and (3) the 
retrieval cue dictates which representation the system will use for remembering.

To verify our three hypotheses, we designed two experiments in a version of 
Blocks World.1 In the first experiment, the agent observes situations with several 
blocks of different sizes, infers hierarchical relations based on the sensory input, and 
store the inferred states as events. Then, in the second experiment, we took a typi-
cal event generalization hierarchy from the first experiment and asked the system to 
retrieve stored events from this hierarchy using partial states as retrieval cues.

More specifically, we first generated 50 sequences of 50 states, randomly sampled 
from a distribution of two state classes, adjacent and tower, with 50% prob-
ability for each class. As Fig. 5 shows, the two classes represent two distinct kinds 

1  Here, our goal is to evaluate the hybrid memory system on its ability to unify aspects of causal and 
simulation theories, and this makes Blocks World an ideal domain for evaluation. Our future work will 
adopt a more complex domain and address the time complexity of our event memory system.
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of situations in the world. The former describes states where two blocks are next to 
each other, and it has a relatively flat dependency structure that includes clear and 
adjacent_to relations over perceived objects and their attributes. In contrast, the 
latter includes states where three blocks are stacked vertically, and it has a taller 
structure that includes clear, on, and tower relations. In both cases, the blocks 
vary in their lengths, heights, and positions in x and y directions. For the first experi-
ment, we presented each of these 50 state sequences to the system, which incremen-
tally built its event generalization hierarchy from its observations. We then inspected 
the 50 hierarchies our system built and analyzed their structure and contents.

Out of these 50 generalization hierarchies, we chose one typical example for 
our second experiment. We gave this to the system and re-supplied the original 50 
states used to build this hierarchy as retrieval cues at different levels of complete-
ness, to see if the system can successfully retrieve and remember the original events. 
Our experimental procedure consisted of ten epochs, with the completeness of the 
retrieval cues gradually decreasing from 100 to 10%. Namely, the first epoch uses 
each of the full states as a retrieval cue, the second epoch uses 90% of each state, 
and the percentage goes all the way down to 10% of each state for the last epoch. 
Every epoch included one trial for each set of the original 50 states, in which we 
presented 20 different partial states of the original state as retrieval cues for remem-
bering. We used partial states that we generated by randomly removing the amount 
of nodes from the original states that corresponds to the epoch. We recorded several 
different performance measures during the 10,000 runs. These measures include: the 
percentage of original state elements provided as retrieval cues, the total number of 
nodes in the retrieval cues, whether the system retrieved an episode or a schema for 
remembering, the match distance between the retrieval cue and the retrieved ele-
ment, and so forth. In the following sections, we analyze our results from the two 
experiments to verify each of our hypotheses presented above.

5.1 � Storing and Schematizing Episodes

Our first hypothesis is that our system can store and categorize events in qualita-
tively distinct schemas. Since it is not practical to study the qualitative meaning of 
every single schema from all 50 cases, we instead checked the overall structures of 
the generalization trees and compared the probability distributions of siblings at a 

(a) (b)

Fig. 5   Dependency graph for the two event classes used for our experiment



	 D. H. Ménager et al.

1 3

few different levels. Each of the 50 randomly generated sequences of events resulted 
in a generalization hierarchy like the one shown in Fig.  6 that includes observed 
episodes at the leaf nodes (red boxes) and several layers of event schemas (blue 
boxes) over them. The two highest-level schemas under the root node are a generic 
schema for adjacent class of episodes (schema (1) in the figure) and another (2) 
for tower class of episodes, respectively. Further, we found a binary sub-tree under 
the former, which represents different sub-classes of adjacent events. The sub-
tree includes three to four levels of schemas and then episodes at the leaf nodes.

Given such a structure, an important question then is whether or not the schemas 
our system generates group episodes and lower-level schemas properly according 
to the observed state’s qualitative aspects. For this, we chose some schemas from 
some sample sub-trees and inspected them in detail. We found that there exist a 
few dominant variables that distinguish the sibling schemas at each level. Figure 7a 
shows how the two schemas, (5) and (6), differ in their distributions. The probabili-
ties for the first schema’s variables are plotted in blue, whereas those for the second 
schema’s variables are plotted in red. The result shows that most of the variables 
have purple-colored plots, implying that the two schemas have very similar distribu-
tions. However, a small number of variables, including x0 , x1 , and height0 , shows 
noticeable red or blue colors where the two schemas differ from each other. This 
means that these two schemas, (5) and (6), are distinguishable by the x locations of 
block0 and block1 and the height of block0. Namely, one schema represents 
cases where the blocks are located closer to the origin and the first block is shorter, 
compared to the other schema where the blocks are farther out on the x axis and 
the first block is taller. The two siblings schemas under schema (4) also exhibited 
similar characteristics, being distinguishable by the x locations, heights, and lengths 
of block0 and block1 as shown in Fig. 7b. This shows that our system indeed 
categorizes events in qualitatively distinct, hierarchical schemas while storing them 
in its event memory.

Fig. 6   A typical generalization hierarchy after observing a mixed sequence of adjacent and tower 
classes totaling to 50 states
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5.2 � Remembering Using Episodes and Schemas

Based on the evidence that our system stores and categorizes events into schemas 
properly, we then proceed to verify the two remaining hypotheses related to remem-
bering. We believe that our system can remember events using either episodic or 
schematic elements in memory depending on situations. Further, we suspect that 
there is a parameter that dictates which of these representation the system will 
retrieve for remembering, and argue that some aspects of the retrieval cue play an 
important role for this.

Fig. 7   Comparison of marginal probabilities of two second-level sub-schemas of adjacent class
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To verify these hypotheses, we first studied the type of event memory elements 
that our system uses during the second stage of our experiments. Figure 8a shows 
the percentages of episode usage and schema usage in each of the epochs during our 
remembering experiment. The plot at the top depicts the percentages of episodes 
(orange) and schemas (blue) used to remember adjacent events, whereas the plot 
at the bottom shows those used to remember tower events. In the epochs where the 
completeness of retrieval cue is low, the system relies mainly on event schemas to 
produce remembered events, but it uses more episodes than schemas as the retrieval 
cues become more complete. In other words, the system prefers schemas when the 
cue provides only a small amount of information, but it switches to episodes when 
the cue gives more information. For adjacent class of events, this switch hap-
pens near 50% cue completeness, while it occurs around 63% for the tower class of 
events. We believe that the switch from schemas to episodes for more complete cues 
is the right strategy to remember properly. On one hand, it is reasonable to fill in the 
details from the aggregated previous experience reflected in event schemas, when 
the retrieval cue gives very little information. On the other hand, it makes sense 
to retrieve an episode that matches situational details, when the cue provides more 
complete picture of the state to be remembered.

It is important to note that retrieval of an element does not automatically mean 
that the system is able to remember. In case of episodic retrieval, an element returned 
from event memory is indeed what the system returns as a remembered event. How-
ever, in schematic retrieval, the system needs to generate a specific instance from 
this schema to produce a remembered event. For this reason, we also measured the 
rates of successful remembering when the system is using episodes and schemas, 
respectively. As expected, Fig. 8b shows that the system is always able to produce 

(a) Retrieved event memory element distribu-
tion.

(b) Remembering success rate of retrieved el-
ement type.

Fig. 8   The system remembers events using both episodic and schematic representations
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a remembered event when it retrieves an episode (orange) for both adjacent and 
tower classes. The episodes stored in event memory are full descriptions of events 
and the system can simply return them when its retrieval process deems these to be 
the best match.

In contrast, schemas require probabilistic inference based on the retrieval cue to 
produce a remembered event, and the rate of successful remembering is less than 
100%. As shown with blue color in the figure, the system is able to remember an 
event with a retrieved schema about half of the time, except for cases when the 
retrieval cues are too vague or too specific. Indeed, the system behavior is very sta-
ble in the range from 20 to 80% cue completeness. This implies that the system can 
remember events in a reliable manner not only when using episodes, but also when 
using schemas. Further, we believe that the rates of successful remembering in the 
latter case are about 50%, not higher, because we enforce a complete constraint sat-
isfaction during remembering. In this default setup, we require the system to return 
failure when the probability distributions in event schemas do not yield a consistent 
set of assignments for the unobserved variables, namely, the variables not mentioned 
in the retrieval cue. Later, when we relax this condition, we expect the system to 
be able to remember events more often. This will be at the expense of the system 
sometimes producing remembered events that are not exact and fully consistent, but 
we know that humans often do the same and, in fact, this is central to our planned 
approach for modeling human memory errors.

In the extreme cases where the completeness of retrieval cue is very low, we 
observed that the rate of successful remembering when using a schema harbors 
lower at around 33% for the adjacent class and around 12% for the tower 
class. This is reasonable because the retrieval cues provide very little information 
in this region and the system needs to produce a large, consistent set of variable 
assignments from probability distributions which is less likely to be successful 
due to the high uncertainty. The episodic retrieval is still successful all the time in 
this region, but this is not very meaningful since the system rarely uses episodes 
here anyway. In the other extreme cases where the completeness of retrieval cue 
is very high, we found that the two classes yield opposite system behavior. At 
90% completeness, the rate of successful schematic remembering for the adja-
cent class is much lower than the norm, whereas that for the tower class is 
higher. We are still investigating this interesting behavior, but we suspect that 
the more vertical dependency graph of the latter class might be providing more 
useful information for successful remembering than the wider dependency graph 
of the former. Finally, at 100% cue completeness, the system depends entirely on 
episodes and does not use schemas for remembering as we suspected.

In addition, we also looked at the average depth in the hierarchy where the sys-
tem’s retrieval occurs for remembering and the average number of instances those 
retrieved elements summarize. Figure 9a shows the average depth from which the 
system retrieved event memory elements when the system succeeds in producing 
a remembered event through probabilistic inference (top graph) and when it fails 
to do so (bottom graph). For both tower and adjacent classes, the system 
was successful in remembering when it used schemas close to the episodes at the 
leaf nodes (with depths around 4 to 5), whereas the system mostly failed when 
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it chose schemas near the top of the hierarchy. Figure 9b also shows a consist-
ent result, where the smaller number of instances summarized by the retrieved 
schemas in successful remembering cases (top graph) and the higher number of 
instances in failed cases (bottom graph). As before, we believe that the strict con-
straint satisfaction we required in this setup played a part in this phenomenon. 
Furthermore, we attribute the lack of intermediate-level schemas retrieved for 
remembering to the two event classes being mostly distinct and not sharing many 
component objects and relations.

In summary, we found evidence that verifies our three hypotheses about the 
hybrid event memory system we developed. The system is capable of storing events 
in memory as specific episodes and generalized schemas at the same time, and it can 
retrieve either of these two to produce a remembered event. We also found that the 
completeness of retrieval cues modulates the system’s behavior as to which repre-
sentation to use for remembering. These results suggest that our system is a reason-
able implementation of the hybrid event memory theory we described earlier, and 
that it provides a powerful computational framework for us to model various human 
memory phenomena. In the next section, we review some of the previous work in 
related directions to position our work in the proper context.

6 � Related Work

As discussed in the sections above, we believe that our hybrid theory of event mem-
ory provides a novel and elegant unification between two main philosophical theo-
ries of human memory. The system we developed based on this hybrid theory can 

(a) (b)

Fig. 9   Characteristics of retrieved elements for remembering
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serve as a computational framework to explain various human event memory phe-
nomena, as we hinted in our earlier review of existing theories. We trust, for the 
moment, that the review adequately positioned our current work in the philosophical 
literature. We plan to explore in a separate paper how our system relates to human 
memory phenomena, as extensively studied in cognitive psychology and neuro-
science. There, it will be of particular interest to explore how our implementation 
would relate to current accounts of human event memory, for example (Eichenbaum, 
2017; Yonelinas et  al., 2019; Moscovitch et  al., 2016). In this section, we instead 
focus on previous work that are directly related to the technical aspects of our com-
putational theory.

Our system’s ability to generate schemas that aggregate numerous episodes is 
similar in spirit to research on concept formation, where scientists use a wide array 
of techniques to acquire knowledge from examples. In machine learning, there are 
methods to learn new concepts from examples included in a dataset (e.g., Murphy, 
2012). But these typically separate the learning task from the performance task. In 
other words, the task of learning the domain knowledge is separated from making 
predictions using the learned knowledge. This is because all the examples used for 
forming concepts must be present at the outset of learning. Hence, this methodology 
can be problematic especially for cognitive systems that must learn and operate over 
extended periods of time. This suggests that incremental methods for concept for-
mation, which gradually form concepts while observing new examples by interleav-
ing the performance and learning tasks, are more appropriate for cognitive systems.

Some of the earliest incremental concept formation systems include CYRUS 
(Kolodner, 1983), COBWEB (Fisher, 1987), and UNIMEM (Lebowitz, 1987). 
These systems represent events as fixed sets of attribute-value pairs. They organ-
ize examples into hierarchies with specific instances at the bottom and generalized 
events at the top. Another early concept formation system, MERGE (Wasserman, 
1985), extends the representation of events and decomposes them using a fundamen-
tal relation. Our system is similar to these systems in organizing events in a hierar-
chical manner, but it represents episodes as a set of predicates unlike the first three. 
Further, in contrast to MERGE, our system does not impose a limit on the number 
of relations present in the state and naturally handles cases where no fundamental 
relation is identified.

Among these early systems, COBWEB stands out due to its use of probabilistic 
concepts, which our system also features. COBWEB uses category utility (Gluck & 
Corter, 1985) as a heuristic for guiding search in the concept hierarchy. This ena-
bles the system to construct concepts whose member instances have high intra-class 
similarity. But it also causes problems in model fit due to the fact that the heuristic 
has a natural tendency to form categories that capture spurious relationships in the 
data. In contrast, our system avoids this problem by using the Bayesian Information 
Criterion as its heuristic evaluation function. As discussed in Sect. 4.2.1, our sys-
tem considers the predictiveness and complexity of the model simultaneously. The 
former measures the goodness of fit of the given instance, while the latter acts as a 
built-in regularization to avoid overfitting.

There are a number of systems built using the COBWEB infrastructure. CLAS-
SIT (Gennari et  al., 1989) substitutes categorical attributes with real-valued ones 



	 D. H. Ménager et al.

1 3

and generalizes the category utility heuristic into continuous domains, although it 
still suffers the problem of overfitting like COBWEB. Our system is not currently 
capable of handling continuous probability distributions, but we plan to extend it to 
use hybrid Bayesian networks (Koller & Friedman, 2009) and allow inference with 
both continuous and categorical variables.

Another system using COBWEB as its basis is LABYRINTH (Thompson & 
Langley, 1991). While most of the early systems could not handle structured infor-
mation, this system is capable of doing so by extending its representational lan-
guage for concepts. The system uses hierarchical concepts over primitive, ordered 
set of attribute-value pairs to describe complex relations in the world. LABYRINTH 
follows MERGE in the use of a fundamental relation that is believed to naturally 
decompose events in many domains. Our system uses a different representation 
where objects, their attributes, and relations are all included as nodes in a Bayesian 
network. It also uses a top-down matching of events unlike LABYRINTH’s bottom-
up search, ensuring more efficient insertion and retrieval.

The most recent COBWEB-based system is TRESTLE (MacLellan et al., 2015). 
It makes many improvements to COBWEB’s representational capabilities. TRES-
TLE can learn clusters containing numerical, categorical, relational, and component 
information, and it supports partial matching, allowing the system to handle par-
tially observed elements and predict missing elements. But its concepts are flat and 
does not contain components, whereas our system supports hierarchical concepts. 
Further, TRESTLE still uses the category utility heuristic to evaluate the quality of 
match, and it suffers from the same overfitting issues as the original COBWEB.

A recent work that takes a different approach than the COBWEB family of sys-
tems for discovering new knowledge in structured domains is SUBDUE (Jonyer 
et al., 2001). This system incrementally discovers substructures from input data 
via a lossy iterative compression procedure. To support incremental concept for-
mation, the authors extended their system to form a concept lattice of substruc-
tures. Interestingly, the heuristic SUBDUE uses, namely, minimum description 
length, is the negation of the Bayesian Information Criterion we use in our sys-
tem, which, according to (Koller & Friedman, 2009), we can interpret as the num-
ber of bits needed to encode both the model and the data given the model. But 
the two systems are different in other aspects, like SUBDUE’s use of a directed 
multi-graph versus our use of a tree-based hierarchy, as well as SUBDUE’s omis-
sion of specific instances in its memory versus our system’s storage of both epi-
sodes and generalized schemas.

Another recent work related to our system is the Nearest-Merge algorithm (Liang 
& Forbus, 2014). It constructs hierarchical, probabilistic concepts via analogical 
generalization. The system stores both a set of generalizations and a set of unassimi-
lated examples. Nearest-Merge extends an analogical generalization system, SAGE 
(McLure et  al., 2010), that implements structure-mapping theory (Gentner, 1983; 
Falkenhainer et al., 1989). Our system uses a matching algorithm that is similar in 
spirit, although it is different from Nearest-Merge’s two-stage mapping using MAC/
FAC processes (Forbus et al., 1995).

In the area of continual learning, Lopez-Paz and Ranzato (2017) designed a gra-
dient episodic memory system capable of learning a diverse set of recognition tasks 
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as cases stream in, all while avoiding catastrophic forgetting. The system accom-
plishes this by keeping a dedicated storage for each task that can store up to m exam-
ples. Deep neural nets with two hidden layers are then learned for each storage. Our 
system also learns multiple schemas over instance representations, but unlike the 
gradient episodic memory, one instance is summarized by many schemas in the 
hierarchy and can also be retrieved whenever appropriate.

Hintzman ’s MINERVA (Hintzman & Ludlam, 1980; Hintzman, 1984, 1986; 
Collins et  al., 2020) is another influential work on modelling human event mem-
ory capabilities. The system stores a trace for each experience it encounters in an 
archive and forms recollections in response to a retrieval cue. Unlike most archival 
views, MINERVA utilizes a reconstructive retrieval process. When given a retrieval 
cue, the system matches against all elements in its memory in parallel and forms 
a schema by averaging elements with high activations from each stored example. 
Unlike in our work, the generated schema is not stored in memory. This distinction 
means that MINERVA will gradually lose its ability to recollect events as forgetting 
takes place since it only stores the examples. Our system, on the other hand, because 
it stores schemas, can lose some or all of the observed examples and still use the 
schematic information to remember.

In the cognitive systems literature, there have been several systems with event 
memory capabilities. Stachowicz and Kruijff (2011) built a memory system with 
episodic capabilities for a cognitive robot. Nuxoll and Laird (2012) also built an epi-
sodic memory for a simulated robot using the Soar cognitive architecture (Laird, 
2012). These memory systems were built with an eye toward real-time agents in 
physical environments, rather than focusing on providing a theoretical framework 
for event memory. Events are copied into an archive, and then later retrieved to aid 
the robot achieve a goal state or answer questions. One of the motivations behind 
our system also relates to its use in cognitive systems, and we previously reported on 
an earlier version of our memory system (Ménager, 2016) in the context of a cogni-
tive architecture, Icarus  (Choi and Langley 2018). We have not tested our latest sys-
tem in a goal-driven execution agent beyond some trial runs, but we plan to further 
study our memory system in an agent setting and report our results at a later time.

7 � Future Work and Conclusions

Event memory is a central component of human cognition, and our current work 
covers a small fraction of its functionality. Previous models of the mental structures 
and processes necessary for remembering events are unable to explain the full range 
of human uses of event memory. After reviewing the two most prominent theoreti-
cal approaches, namely, the causal and simulation theories, we introduced a novel 
hybrid theory of event memory. Our aim was to develop a hybrid theory that cap-
tures the full range of event memory phenomena. We offered a detailed description 
of our implementation of this hybrid theory, including the representation of episodes 
and event schemas and the processes that work on these representations.
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We also reported results from our experiment to test the system’s remembering 
capabilities in a modified blocks world. The results not only show that our system is 
able to store both specific episodes and generalized event schemas, but also validate 
our claim that the system can remember using hybrid representations. Our account 
thus provides a novel unification of existing theories, which can now be used to 
model various other features of human event memory. Our model tested relatively 
simple memories, featuring two items and their relation. Event memories can, of 
course, be far more complicated. A key feature of future work will be exploring how 
our framework accommodates more complex representations and relations.

Going forward, we plan to test our event memory system on other aspects of 
memory processing—most notably, forgetting. We hope to extend this investiga-
tion into a broader list of higher-level abilities enabled by event memory storage and 
retrieval, such as generating explanations about one’s past and making predictions 
of the future from event memory contents. In addition, we hope that our model will 
prompt further discussion of how philosophical conceptions of event memory can 
be implemented in Artificial Intelligence systems. Testing our model further in that 
direction, we also plan to assess our event memory system in real-world situations, 
evaluating its run-time performance during increasingly complex scenarios. A fast 
and efficient event memory system is crucial for embodied agents and we will stay 
mindful of this aspect while we work to extend our event memory system in the con-
text of the Icarus cognitive architecture.
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